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The impact of a drop on the plane surface of the same liquid is studied numerically. 
The accuracy of the calculation is substantiated by its good agreement with available 
experimental data. An attempt is made to explain the recent observation that, in a 
restricted range of drop radii and impact velocities, small air bubbles remain 
entrained in the liquid. The implications of this process for the underwater sound due 
to rain are considered. The numerical approach consists of a new formulation of the 
boundary-element method which is explained in detail. Techniques to stabilize the 
calculation in the presence of strong surface-tension effects are also described. 

1. Introduction 
The fact that a water drop impinging on a water surface may lead to the 

entrapment of an air bubble at  the bottom of the crater that it produces has been 
known for some time (Franz 1959). However, the intricate features of this 
phenomenon have only recently been clarified by Pumphrey & Crum (1988 ; see also 
Pumphrey, Crum & Bjorn0 1989) in the course of an experimental study of the 
mechanism of rain noise. While their results will be summarized in some detail in the 
next section, we mention here that they discovered that, far from being a random 
event as suggested by Franz, bubbles remain entrapped under very well-defined 
conditions and lead to a very substantial noise emission in the water. The significant 
consequences of this finding for the generation of underwater noise by rain have been 
addressed elsewhere (Prosperetti, Pumphrey & Crum 1989) and are summarized in 
the last section of this paper. Here we wish to study theoretically the fluid dynamics 
of crater formation and bubble entrapment and develop a qualitative understanding 
of the physics involved in these processes. Our main tool is numerical, and the 
dominant effect of surface tension on the process has required the development of a 
stable boundary-integral method which is of interest in itself and is described in 
detail. 

The study of drop impact on liquid surfaces has a long history that goes back to 
the end of the last century when Worthington (1894) studied the process by means 
of single-flash photography. Quite famous are also the high-speed photographs of 
Edgerton (Edgerton & Killian 1939). These researchers, as well as others such as 
Engel (1967) and Macklin & Metaxas (1976), studied, however, impacts at relatively 
high speeds and therefore missed many interesting aspects of the process that were 
recently identified by Pumphrey and Crum. One of the early applications of the MAC 
code also dealt with drop impact on a liquid layer (Harlow & Shannon 1967 a, b ) ,  but 
again, as pointed out by Carroll & Mesler (1981a, b ) ,  many subtleties were missed 
because of the incomplete treatment of surface-tension phenomena. The same 
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problems have been encountered quite recently by Nystuen (1986), Nystuen & 
Farmer (1988), and Hashimoto & Sudo (1980) with their updated versions of the 
MAC code. The last authors were able, however, to describe the entrapment of 
secondary bubbles upon the collapse of the liquid column that forms with the filling 
of the crater (see $2). 

As already observed, the main difficulty to overcome in the numerical simulation 
of the process is the treatment of surface-tension effects. I n  an earlier study (Oguz 
& Prosperetti 1989) we have shown that, in most practical circumstances, surface 
tension causes liquid-liquid contact to occur not only a t  the point of first contact 
between the drop and the receiving liquid, but over an extended area. In that paper 
the intricacies of this phenomenon were explored in detail. Here we shall bypass 
those aspects by adopting an initial condition in which the drop contacts the plane 
liquid surface over a sufficiently large area. Even with this approximation, surface 
tension causes serious difficulties. I n  a model such as the present one in which 
capillarity is accounted for but not viscosity, an attempt to obtain a high surface 
resolution leads to  the appearance of short capillary waves which have a very large 
frequency. As a consequence, the ratio between the shortest and longest timescales 
is very small and the problem is numerically stiff. Time steps of a reasonable 
magnitude can only be used in the integration by introducing a suitable smoothing 
action on these very short waves. We believe that the procedures that we have 
developed for this purpose, described in $6, can be applied to a variety of other 
problems in which surface tension plays a major role. 

2. Summary of the experimental results 
In order to set the developments of this paper against a suitable background it  is 

useful to give here a summary of the experimental findings of Pumphrey & Crum 
(1988; see also Pumphrey et al. 1989; Prosperetti et al. 1989). One of their most 
unexpected results is the fact that bubbles are entrapped in the crater produced by 
the impacting drops only in a sharply delimited region of parameter space, which we 
shall refer to as the bubble region. If, a t  the moment of impact, the drop is assumed 
to be spherical, then two parameters are sufficient to completely characterize an 
impact event. They can be conveniently chosen to be the impact velocity U and the 
drop radius R or, alternatively, the Froude number Fr 

u2 
Fr = ~ 

2gR ’ 
and the Weber number We 2p V R  

We = ~ 

U 

In  the (R, U)-plane shown in figure 1 the dashed line shows the terminal velocity 
of rain drops. To the right of this line a regular process of bubble entrainment takes 
place only in the shaded region. This figure shows the original data of Pumphrey and 
Crum and two continuous lines obtained by a best fit to the data. Below the shaded 
area the crater is too shallow to give rise to a bubble, while above it its energy is too 
large. Two typical high-speed sequences of drop impacts with and without bubble 
formation are shown in figures 2 (a)  and 3 (a )  taken from Pumphrey & Crum (1988). 
In the first case the cavity takes on a more or less cylindrical shape with a rounded 
nose. The liquid motion stops and reverses a t  different times a t  different positions. 
While the tip of the cavity keeps growing, the sidewalls reverse their outward motion 
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FIGURE 1. In the space of the parameters R (drop radius) and U (drop impact velocity) an air 
bubble is entrained only in the shaded region. Here the symbols are the data of Pumphrey and 
Crum (Prosperetti et d. 1989). The lines are best fits to the data obtained by neglecting the two 
leftmost data points that appear to be affected by a large error. 

and start moving in with a velocity that increases with depth. The consequence of 
this situation is the curious funnel shape appearing in the last few frames, which 
leads to a bubble through the pinching-off of the narrow tip. 

The cavity dynamics in the higher impact velocity case of figure 3(a )  is quite 
different. The cavity is very nearly hemispherical with a pronounced splash around 
its rim and the liquid, aside from some capillary waves, seems to reverse its motion 
more or less simultaneously everywhere around the crater's surface. This leads to a 
filling of the cavity which starts a t  the bottom, where the potential energy is highest, 
and causes an upward-directed jet. One way in which the difference between figures 
2 (a)  and 3 (a)  can be described is by saying that, while the impacting drop is a source 
of both mass and momentum for the receiving liquid, the mass-source aspect 
dominates a t  high velocity, while the momentum-source aspect, with its downward 
direction, is the most important feature a t  moderate impact velocities. Movies in 
which the impacting drop is coloured show that, in the high-velocity case, the drop 
material spreads rather evenly over the surface of the cavity.? The indirect evidence 
that we have seems to indicate instead that, at the moderate impact velocities that 
give rise to bubbles, the drop material remains collected at the bottom of the cavity. 

The vertical lines to the right of the physical event in the photographs of figures 
2 (a)  and 3 (a )  reproduce the screen of an oscilloscope driven by a hydrophone visible 
in the right-hand corner of the frames of figure 2 (a) .  It is clear that the detachment 
of the bubble in figure 2 (a )  is accompanied by a substantial acoustic emission, while 
all other phases of the process, including the impact itself, are relatively silent. 

Figure 4 is a replotting of figure 1 in terms of Fr and We. The continuous lines are 
given by power-law relations of the form 

We = A Fr". (2.3) 

t We are indebted to Dr G. Chahine for making available to us his films. 
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FIGURE 3. Comparison between (a )  the  high-speed film of Pumphrey & Crum (1988) and ( b )  the 
computed results of the present study for the impact of a drop with a radius R = 2.9 mm and 
impact velocity TJ = 2.40 m/s. The times indicated are in the dimensionless units t ,  = U t / R ,  with 
the time origin a t  the instant of impact. This sequence is typical of impact events in which the 
impact velocity is too large for a bubble t o  be entrained. The width of the frames showing the 
computed results is 20 dimensionlesv units. 

If the two data points a t  the smallest values of the radii, which are difficult to 
obtain experimentally and appear in figure 1 to be affected by a relatively large error, 
are discarded, a least-square fit gives A = 48.3 and a = 0.247, and A = 41.3 and 
a = 0.179 for the upper and lower lines, respectively. 

3. Qualitative mechanism of bubble entrapment 
Before embarking in a complex numerical study of the process a t  hand, it is useful 

to try to understand its main features in qualitative physical terms. 
Let us first consider the possible origin of the upper boundary in figures 1 or 4, 

which constitutes an upper bound for bubble entrapment. On the basis of the 
discussion of the previous section i t  seems reasonable to postulate that, if the drop 
material spreads essentially over the entire surface of the crater, the crater will grow 
radially and no bubble will be entrapped. For a given radius, the upper limit to the 
impact velocity arising from this argument is therefore 
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FIQURE 4. The two boundaries of the bubble region shown in figure 1 are plotted in terms of 
the Froude number u2/2gR and Weber number 2 p U R / u .  

where R,, is a characteristic linear dimension of the region over which the drop 
material spreads and R, is the radius of the crater. This equation should correspond 
to the upper boundary in figures 1 or 4. 

In  order to estimate the crater radius we equate the energy of the drop just before 
the impact, 3&R3) u2, to the potential energy stored in the crater a t  the moment in 
which the motion reverses itself. With the neglect of surface energy, which can be 
shown to represent only a small fraction of the total energy in the crater, and the 
assumption of a hemispherical shape, it is easy to find that 

R, - R Frf. (3.2) 

A more realistic assumption about the shape of the crater would only introduce 
numerical factors of order one. As a matter of fact, it turns out that  this simple 
relation fits extremely well all the data collected by Pumphrey & Crum (1988). 

To estimate the spreading radius we may proceed as follows. During the impact, 
the retarding force acting on the drop can be estimated to be of the order of the 
virtual mass, 3cpR3, times the acceleration (U/R)  U. This estimate assumes that the 
motion with velocity U is brought to rest in a time of the order of RIU.  The force that 
restrains the spreading of the droplet material is surface tension, so that we are led 
to the balance 

In writing this force balance we assume that the drop material has spread over the 
walls of the crater so that the restraining effect of surface tension acts predominantly 
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in the vertical direction as the virtual mass acceleration in the left-hand side. From 
this relation i t  follows immediately that 

lisp - R We. (3.4) 

Another way in which this relation can be justified is the following. The contact line 
between the drop material and the receiving fluid has a perimeter of order R,,, so that 
the surface-tension force acting on it is of the order of crBsp. On the other hand, the 
total pressure acting on the inside of the drop surface is of the order of the stagnation 
pressure p V  times the drop area R2. Again, the balance of these two forces leads to 
(3.4). 

Substituting now (3.2) and (3.4) into (3.3) we are led to the following relation for 
the upper boundary of the bubble-entraining region 

We - ~ 4 .  (3.5) 
Experimentally, the exponent giving the best fit to the data of figure 4 has the value 
0.247, which is quite compatible with the value 0.25 given by this relation. 

In  order to  formulate a similar argument for the lower boundary of the bubble 
region in figures 1 or 4 we have found i t  necessary to appeal to  the experimental 
observation (H. C. Pumphrey, private communication) that the time t, to maximum 
growth of the crater scales proportionally to RUi. Putting this relation in 
dimensionless form one finds the unique answer 

where c, = (4gcr/p)i is the minimum phase velocity of capillary-gravity surface 
waves. We have been unable to derive this relation on the basis of a simple physical 
argument. However, we have the impression that its success in correlating the data 
is more related to a numerical coincidence in a restricted range of the variables than 
to a fundamental physical law. Be that as it may, it is not unreasonable to find a 
dependence oft, upon c ,  since the energy stored in the crater can only be carried 
away by surface waves, a process that, must be limited by the slowest velocity of 
propagation for these waves. 

With the previous relation we can formulate the following argument. At the same 
time as the crater grows, a capillary wave is established on its bottom by the impact. 
The initial phase of this wave is such that the water motion is downward. If this 
downward motion reverses before the crater has grown to its maximum depth, the 
precise timing necessary for the entrainment of a bubble will be disrupted and the 
crater will fill from the bott,om with an upward-directed wave crest instead. The 
condition for bubble entrapment based on this argument is therefore 

t, > t,, 
where t, is the period of the capillary wave a t  the bottom of the crater which can be 
estimated by [(crlp) k3]- i ,  with the wavenumber k - l/Rsp. In  this way, the marginal 
condition for bubble entrapment is found to be 

We - Fr;. (3.7) 

The exponent of 0.2 is quite comparable with the value 0.179 obtained from a best 
fit to the data. 
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4. Mathematical formulation 
We take the drop and the receiving liquid to be of the same fluid which, for the 

applications we have in mind, will be water. The impact velocities we consider are of 
the order of a few metres per second and the drop radii of a few millimetres so that 
a Reynolds number defined by RUIV has a value of the order of lo3 or higher. Since, 
furthermore, the process is highly transient, viscous effects can be neglected. The 
effects of compressibility are important on timescales of the order of the acoustic 
travel time in the drop, which can be measured in microseconds. Since we are 
concerned with the evolution of the system over much longer times, these effects can 
be neglected and the liquid taken to be incompressible. 

In  an earlier paper (Oguz & Prosperetti 1989) we have studied in considerable 
detail the early stages of the impact and we have found a very complex behaviour. 
Briefly, a number of very small air bubbles are entrained under the drop, and 
liquid-liquid contact occurs at a number of places in addition to the point of first 
contact. The situation can be simulated by a weak vortex sheet that forms between 
the two liquid masses brought into contact. Some preliminary results show that the 
strength of this vortex sheet is very small for the range of impact velocities that we 
consider here. Accordingly, we shall take the motion to be irrotational everywhere 
and the velocity potential q5 to satisfy Laplace’s equation, 

vzcp = 0. (4.1) 
We consider the drop to be spherical a t  the moment of impact with the plane liquid 

surface. This assumption is borne out by the photographic results for small droplets. 
Larger drops do exhibit some shape oscillations, as can be seen in the first frame of 
figure 3 (a ) ,  but they cannot be of any great importance since the numerical results 
that we find reproduce to such a good approximation the experimental ones. 

To avoid the simulation of the early stages of the process that, as was mentioned, 
are extremely complicated, we start the calculation from a configuration in which the 
drop has a non-vanishing area of contact with the receiving liquid. 

The plane surface is taken to  be the (x, y)-plane z = 0 and the z-axis is directed 
upward against gravity. We use the impact velocity U as a reference velocity and the 
drop radius R as the reference length. Time is therefore rendered dimensionless with 
respect to the fundamental timescale R/U. The initial condition is that  the drop 
material is in solid-body motion with unit dimensionless velocity, while the receiving 
liquid is a t  rest, i.e. 

$ = - z ,  OGXG2, q5=0, Z d O .  (4.2) 

Again this is an approximation because the compressional wave that sweeps through 
the receiving liquid at the moment of impact will set a non-zero value of the velocity 
potential, but again this effect does not seem to be of any great importance in view 
of the very good agreement between computations and experiment. 

By use of the Bernoulli integral to express the pressure on the liquid side of the 
interface, the rate of change of the potential carried by a Lagrangian surface particle 
is found to be given by 

where the Froude and Weber numbers Fr and We have been defined in (2.1) and (2.2), 
V denotes the local curvature, positive when the centres of curvature are in the 
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liquid, and the subscript X denotes the generic surface particle. The position of the 
Lagrangian surface particles is obtained by integrating 

2- dx l  - V$lS. 
dt (4.4) 

This relation is not equivalent to the kinematic boundary condition because it also 
contains a specific choice for the tangential velocity of the interface, but this fact is 
clearly of no consequence. 

5. A novel boundary-integral method 
Since our aim is to determine the successive configurations of the interface, we only 

need to be concerned with the values of the velocity field on the free surface. This 
circumstance renders the use of a boundary-integral formulation very attractive. 

Over the past ten years the boundary-integral formulation has received 
considerable attention and has been successfully used in several problems such as 
breaking plungers (Dommermuth et al. 1988). The particular method we choose is 
similar to the one developed by Baker, Meiron & Orszag (1980) for two-dimensional 
flows, although i t  differs from that one in important details as will be shown. 
Furthermore, the present application is particularly demanding in view of the critical 
effect of surface tension on our process. As noted above, and as documented in the 
literature (Pullin 1982 ; Lundgren & Mansour 1988), severe stability problems arise 
on attempting to include surface-tension effects in an inviscid formulation. We have 
succeeded in developing stable and relatively robust methods to handle this problem. 
This constitutes one of the novel aspects of our technique. 

Since 4 satisfies the Laplace equation, so do its Cartesian derivatives 

In the (x, y)-plane Cartesian coordinates are related to cylindrical coordinates by the 
relations 

3x1 ar ax, a z ’  
2 = cos@--, 34 w-=* 

where ~ is the azimuthal angle and r and z are cylindrical coordinates. By a 
straightforward application of the form of Green’s identity appropriate to the 
present axisymmetric problem (see the Appendix and e.g. Jaswon & Synim 1977) to 
the velocity components a$/ax, and some manipulations we then obtain 

( 5 . 1 ~ )  

(5.1 b )  

where G ,  H ,  E and F are known functions involving elliptic integrals of first, second 
and third kind, explicit forms for which are given in the Appendix. 

Next, we introduce a vortex-sheet strength r defined by 
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where Q, is the potential in the fluid region of interest and Q,- represents the potential 
associated with a fluid on the other side of the interface. While in the present case this 
fluid is fictitious in that it only provides a constant pressure and has no dynamical 
effects, the technique that we describe can also be adapted to a two-fluid problem as 
will be seen. We now define a mean velocity by summing the surface velocities on the 
two sides of the interface to find 

and we note that r is related to # by 

(5.3b) 

where t , ,  t, are the component of a unit vector tangent to the interface in a meridian 
plane. How the value of Q, is calculated depends on whether one is dealing with a real 
or fictitious second fluid. In  the present problem we use (4.3), so that the correct 
dynamical boundary condition is imposed. Use of a different equation to update the 
surface value of # renders this method suitable for a two-fluid problem as well. 

Conceptually, substitution of (5.3a, b)  into (5.4) leads to a Fredholm equation of 
the second kind for I'. This is interesting and avoids the potential difficulties that 
might arise from the first-kind equations that would result from a simpler approach 
such as that of Oguz & Prosperetti (1989). For practical purposes, however, rather 
than dealing with this integral equation directly, it is more convenient to solve (5.3a, 
b)  and (5.4) iteratively. 

This method is very similar to the vortex velocity method described in Baker, 
Meiron & Orszag (1984). Its main advantage over that method is that, after 
convergence, the convective surface velocities are readily available from 

w, = g(+?-rt,), v, = t (~ ,y -r t , ) .  (5 .5)  

In the approach of Baker et al., on the other hand, these velocity components must 
be obtained by first calculating the vector potential, which requires the evaluation 
of an integral for each field point, and then carrying out a numerical differentiation 
with an inherent loss of accuracy. 

With a knowledge of the velocity components, the surface position can be updated 
and the equation for the surface potential (4.3) can be integrated to complete the 
time step. In the next section we describe a procedure suitable for the numerical 
implementation of this technique. 

6. Numerical implementation 
The free surface is divided into N arcs. Cubic splines are used to interpolate 

between their end points. Cubic splines are also used to represent all the other 
variables pertaining to  the free surface such as the potential, the vortex sheet 
strength, etc. At the boundaries of the computational domain, for some quantities, 
information is available on the value of the derivatives with respect to the arclength. 
For example, dr/ds = 1 and dx/ds = 0 on the axis of symmetry. In  these cases such 

6 FLM 219 
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information is used in the spline fitting. For other quantities, for which no such 
information is available, so called ‘natural ’ spline conditions (i.e. vanishing of the 
second derivative with respect to the arclength) are imposed. 

Starting with an initial guess for r, the integrals in (5 .3a,  6 )  are evaluated a t  each 
of the N +  1 surface nodes. The values of &?, @’ thus obtained are substituted into 
(5.4), a new value of r is generated, and so on iteratively. For integration in time, 
a second-order-accurate predictor-corrector method based on the trapezoidal rule is 
used. Under-relaxation with a weight of $ is used in the iteration procedure to help 
dampen the unstable behaviour of the surface. 

In  translating the above formulation into a numerical code we have the vectorizing 
capability of the supercomputer in mind. In  the calculation, most of the 
computational work goes into the evaluation of the 2(N+ 1)2 integrals that arise 
when (5.3a, b )  are evaluated at  the surface nodes. It is therefore important to 
vectorize this step. This objective cannot be achieved if an adaptive Gaussian 
integration technique such as that used by Dommermuth et al. (1988) is followed. 
The use of a fixed number of Gaussian points, however, renders a full vectorization 
of the calculation of the integrals possible. Specifically, by use of the cubic-spline 
interpolation, we first evaluate a t  the Gaussian points the integrands that contain 
numerical data pertaining to the nodes such as r, r ,  and z and save them in an array. 
Later, when the integrals need to be evaluated a t  the different surface nodes, only the 
elliptic integrals require point-by-point evaluation. An analytical expression is used 
for this purpose and therefore all the integrals can be evaluated independently from 
each other in a vectorized fashion. I n  our program approximately 90% of the total 
CPU time is spent in simple vectorized DO-loops of this type. A standard practice in 
the evaluation of elliptic integrals is the removal of the logarithmic singularity. 
Although we followed this procedure in a first version of the code, we found that a 
straightforward Gaussian integration that ignores the weak logarithmic singularity 
performed just as well. This circumstance is in marked contrast to the simpler 
approach of earlier papers (Guerri, Lucca & Prosperetti 1982 ; Blake, Taib & Doherty 
1986, 1987; Oguz & Prosperetti 1989) in which the singularity had to  be handled 
accurately. Ten Gaussian points in each arc of the free surface have been used in the 
results to be shown below. 

Some form of smoothing of the free surface is a common practice in boundary- 
integral calculations and almost all of the examples available in the literature use 
some such technique, for example the five-point formula of Longuet-Higgins & 
Cokelet (1976), regridding (Dommermuth & Yue 1987), and others. In  these 
calculations the effect of surface tension was neglected and the stability problem was 
modest. Here, however, since surface tension actually plays a crucial role in the 
physics of the process, it is imperative to use some kind of smoothing. In a first 
attempt, the regridding procedure introduced by Lin (1984) and used by 
Dommermuth & Yue (1987) was applied at each time step. This was found not to be 
sufficient, however. After many unsuccessful attempts we finally developed two new 
techniques. 

Conceptually, the first one can be described as follows. One starts with nodes 
placed at equal distances from each other, the first node being on the axis of 
symmetry. When the new position of these nodes has been obtained, the total length 
of the computational free surface is calculated and a desirable interval As between 
two successive nodes is established. The node on the axis of symmetry is then again 
retained as the first node. However, the second node is placed at a distance $As along 
the free surface from i t ,  while all the other nodes follow at a distance As from each 
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other. The next-to-the-last node will then be a t  a distance +As from the last node. A t  
the next time step the half-interval adjacent to the axis of symmetry is eliminated 
and the regridding is done so that all nodes are a t  the same distance from each other. 
At the following time step, the second node is again put at +As from the axis, and so 
on, This approach is similar in spirit to the use of staggered grids and its effectiveness 
is probably due to the same reason. In the actual implementation, it is desirable to 
use a slowly increasing spacing to extend the computational domain, but the 
essential concept remains the same. 

The second technique is a curvature damping method that also is most effective at 
short wavelengths, where the stability problem is most severe. The technique is as 
follows. At each surface node the sign of the product WddV/dt is examined. If the 
product is negative, nothing is done. If the product is positive, however, the 
evolution equation for the surface potential (4.3) is modified by the addition of a 
term proportional to  dtS/dt, 

Values of h ranging between 0.2 and 0.8 have been found to be adequate to stabilize 
the calculation while retaining a more than acceptable accuracy. Physically, this 
procedure may be interpreted as a sort of ‘surface viscosity ’ which opposes the 
growth, but not the decrease, of the local surface curvature. This keeps the free 
surface smooth, especially in the initial stages of the impact where the instability is 
almost pathological. In  most of the cases that we have calculated we have found the 
two smoothing procedures to work equally well. 

7. Initial conditions 
The initial shape of the free surface that is assumed in this calculation is shown in 

the first frame of figures 2 ( b )  and 3 (b ) .  Ideally, this shape should be that of a sphere 
tangent to the plane surface. As was shown in Oguz & Prosperetti (1989), in the 
initial stages of the impact, contact between the surfaces of the drop and of the 
receiving liquid occurs a t  a number of points. This circumstance gives rise to a vortex 
sheet separating the drop material from that of the underlying liquid. We have 
carried out calculations, to be described elsewhere, that show that this vortex sheet 
is very weak and has a negligible influence on the process. Since its inclusion would 
greatly complicate the present calculation, we have chosen to ignore i t  and we believe 
that the extent to which our numerical results match the experimental ones justifies 
this procedure. However, this approach requires that the calculation be started with 
the two liquids already in contact over a finite area. We show in figure 5 the free- 
surface configuration a t  the moment of bubble entrapment as calculated starting 
with two different initial conditions for the case of figure 2. For the first calculation 
the contact between the surfaces of the drop and of the receiving liquid extends over 
an area corresponding to a solid angle of 0.65 rad, in the second example of 1.0 rad. 
It can be seen that the final results are only slightly affected by the precise form of 
this initial condition. 

Although a smaller amount of free surface would presumably be destroyed in 
lower-velocity than in higher-velocity impacts, to avoid arbitrariness we have used 
the same initial configuration for all of our simulations. 
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FIGURE 5 .  The effect of initial configuration on the configuration of the free surface a t  the moment 
of bubble entrapment for the case of figure 2, R = 1.9 mm, U = 1.53 m/s. The two cases differ in 
the amount of surface area over which contact is established at t = 0, which is equivalent to an 
opening angle of 1 and 0.65 rad. 

8. Comparison between experiment and numerical results 
The impact cases that will be discussed in detail in this section are indicated by the 

letters A-J in the (R, U)-plane of figure 6. This is the same as figure 1 with only the 
best fits to  the lower and upper bubble boundaries shown. 

We begin by considering the two cases R = 1.9 mm, IT = 1.534 m/s, and R = 
2.9 mm, U =  2.40 m/s for which Pumphrey & Crum (1988) publish detailed 
photographic sequences reproduced here in figures 2 (a )  and 3 (a )  respectively. The 
first case corresponds to the point marked J in the (U,  R)-plane of figure 6, while the 
second case is out of scale. A bubble is entrained in the first instance, while in the 
second one the typical, nearly hemispherical crater shape is observed. 

We juxtapose in figures 2 (a )  and 2 (b )  the experimental and the numerical surface 
shapes a t  comparable times for the first case. The most salient discrepancy between 
calculation and experiment is the surface ripple at the edge of the crater which is not 
visible in the photographic results. In  judging the importance of this difference it 
should be kept in mind that the movie has been taken at a slight angle below the free 
surface, a circumstance that would render the presence of a small ripple undetectable. 
Whether this factor is enough to explain this discrepancy is not clear. At least in part, 
this discrepancy may be due to the rather crude way in which the initial conditions 
for the calculations are set. I n  spite of this difference, however, the general shape and 
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FIQURE 6. Bubble boundaries from figure 1 in the (R,U)-plane. The letters indicate the cases 
simulated numerically and discussed in detail in $8. The cases A ,  B, C,  D are shown in figure 9 ;  E ,  
F ,  G ,  H, I in figure 11, J in figure 2 and L in figure 3. 

aspect ratio of the crater compares well with the calculation. A seoond discrepancy 
is in the time to experimental and theoretical bubble entrapment, which in our 
dimensionless units t ,  = Ut /R  is 21.1 and 23.0 respectively. Although again part of 
this difference may be due to the various approximations made, it may also be noted 
that there is an uncertainty in the experimental value of both the time at which 
contact between the drop and the receiving liquid is established and the time at  
which a closed bubble is formed. At 1000 frames per second, for this case, the interval 
between two frames is about 1.2 dimensionless time units which is sufficient to 
account for the observed difference. We feel that, with due consideration of these 
factors, agreement between theory and experiment is quite good and lends 
substantial support to our model and calculational procedure. A different view of the 
free surface for this case, affording a better appreciation of the three-dimensional 
nature of the process, is shown in figure 7. 

We present an analogous comparison for the second case, R = 2.9 mm, U = 
2.40 m/s, in figure 3. Contrary to the previous case, a thin three-dimensional splash 
appears almost immediately. It is clear that the numerical method does a rather poor 
job at  reproducing this feature. The computed splash is much thicker and, perhaps 
as a consequence of this, much less inclined outward. However, compared with the 
computed splash of the previous case, it appears to be substantially thinner so that 
this trend at  least is reproduced by the calculation. Here the problem may in part be 
one of resolution, although it is doubtful that features on such a small scale can be 
reproduced by the present numerical method while maintaining an acceptable 
stability of the algorithm. In any case, we have not attempted to obtain such a 
resolution. The photos also show much more pronounced capillary waves than the 
calculation. Evidently, this difference is part of the price paid to achieve stability. 
With these exceptions, the calculations do, however, compare very well with the 
photographs. The time evolution is closely mirrored by the calculation up to the jet 



160 H .  N .  Oguz and A .  Prosperetti 

FIGURE 7. For caption see facing page. 

rising from the centre of the crater and a secondary drop pinching off from its tip. 
It may be remarked that the small structure visible in the frames a t  times t ,  = 32.5 
and 36.7 is produced by the impact of a small satellite drop trailing behind the main 
one that impacted a t  time 0. 

A more detailed view of the central part of this calculation is shown in figure 8. In 
this case the regridding procedure has proven inadequate to stabilize capillary effects 
in the neighbourhood of the axis of symmetry after a dimensionless time around 50. 
The problem is that the capillary wave that travels toward the axis of symmetry 
(see e.g. the panel for t, = 50.526 in figure 3 b )  becomes too large as it gets closer to it 
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FIGURE 7. A three-dimensional cutaway view of the free surface for the impact case of figure 2 .  The 
times indicated in the upper left-hand corner of each frame are non-dimensional values of the 
quantity t ,  = U t / R .  I n  this case the reference time is R / U  = 1.2 ms. 

and destroys the calculation. I n  this case it has been necessary to use an additional 
damping for a short interval of time between dimensionless times 47 and 56 
approximately. The five-point formula of Lundgren & Mansour (1988) has been used 
for this purpose. 

We have carried out a number of other simulations for various drop radii and 
impact velocities. In figure 9 (a-d) we present results for R = 1.75 mm and impact 
velocities of 1, 1.5,2, and 2.5 m/s. These cases correspond to the points marked A ,  B, 
C, D in the (R, U)-plane of figure 6. 
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FIGURE 8. For caption see facing page. 
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FIQURE 8. A more detailed sequence of the free-surface evolution between the last two frames 
of figure 3. 
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FIQURE 9(a).  For caption see p. 167. 
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FIGURE 9 ( b ) .  For caption see p. 167 
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FIGURE 9(c). For caption see facing page. 
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FIGURE 9. Successive computed surface shapes of a drop impacting a plane surface for R = 1.75 mm 
and ( a )  U = 1 m/s, ( b )  1.5 m/s, (c) 2 m/s, (d )  2.5 m/s. These cases correspond to the points marked 
A ,  B,  C, D in figure 6. The times indicated are non-dimensional values of the quantity t ,  = Ut/R. 
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At the lowest impact velocity (U = 1 m/s, figure 9 a )  the crater is too shallow to 
trap a bubble. The drop is seen to penetrate into the liquid almost undeformed and 
its top can be followed up to a depth of about one radius. At this moment the shape 
of the crater is nearly rectangular. This behaviour is observed in almost all the cases 
considered here. This initial rectangular shape evolves into a more rounded one and 
when maximum depth is reached the crater takes on a characteristic conical shape. 
After this, it starts filling up from the bottom before any bubble can remain 
entrapped. This is consistent with the experimental findings of figure 1. Owing to the 
high surface-tension effect, in this case hardly any jet is formed as the crater fills up. 
The net effect of the impact is therefore to produce a surface ripple. 

According to figure 6, the next case (U = 1.5 m/s, figure 9 b )  lies on the boundary 
of the bubble region and the numerical results show that a bubble is entrained. A 
comparison with the previous case shows a deeper crater, a longer timescale, and the 
characteristic ‘ nipple ’ which is ultimately responsible for the formation of the 
bubble. The last two cases (U = 2 and 2.5 m/s, figures 9c and 9d) are above the 
bubble region and the crater fills with a jet from the bottom. A more spherical shape 
and the presence of large capillary waves in the crater are prominent differences with 
the previous two cases. 

For a fixed radius, increasing the velocity of impact has the effect of increasing the 
Froude number and decreasing the Weber number. The gradually more prominent 
ridge around the rim of the crater that  is observed in going through the previous 
sequence is a consequence of this weakening of surface-tension forces with respect to 
gravitational and inertial effects. In  all these examples the computational domain is 
three times as big as the frames shown and the duration of the calculation is short 
enough that no boundary effects arise from the truncation of the domain. One may 
also note the scaling of the duration of the process with a power of U greater than 
1, as already mentioned in $3. 

It is instructive to compare, see figure 10, the last three computed surface 
configurations for the cases of figures 9(b) ,  9(c), 9(d). The disappearance of bubble 
entrapment in going from figure 9 ( b )  to 9(c) and then to 9(d) is seen to be due 
essentially to the difference in the times a t  which the sides and the bottom of the 
crater invert their motion. For the bubble to be entrapped, the bottom of the crater 
is still moving downward when the sides have already started to move inward. As the 
impact velocity increases, the inward motion of the sides starts later and later until, 
in the last case, it has not yet begun a t  the moment a t  which the bottom starts to 
fill up with a jet. The marginal case captured in figure 10(b)  is that in which 
essentially the bottom jet has grown just enough to fill up the space enclosed 
between the sides. The detailed timing of these processes explains why the 
entrapment of bubbles by a falling drop is such an improbable event. 

A sequence similar to that of figure 9 is shown in figure 1 1  (a-e) for R = 1 mm and 
U = 1.5, 1.75, 2, 2.4, and 3 m/s. These cases are marked by the points E ,  F ,  G, H ,  I 
in figure 6. The first case shows a behaviour very similar to the lowest velocity case 
of the previous sequence. The second case is very near, but outside, the lower bubble 
boundary. Here a bubble is not trapped because the motion of the bottom of the 
crater inverts too late, but nevertheless conditions are so close to the entrapment of 
a bubble that the characteristic ‘nipple ’ forms. This region of large curvature causes 
a very low pressure in the liquid, which gives origin to a thin jet. The last three 
frames show the tendency of the tip of this jet to break off owing to a capillary 
instability. 

The next case, figure 11 (c), is just inside the bubble region. It can be seen here that 
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Time = 21.7 33.8 48.2 

FIGURE 10. Last three computed shapes of the free surface for an impacting drop of radius 1.75 mm 
at three different velocities. The first row corresponds to U = 1.5 m/s (figure 9b), the second to 
U = 2 m/s (figure 9c) and the third to U = 2.5 m/s (figure 9d) .  The non-dimensional time is indicated 
in the upper left corner of each frame. The width of each frame is 20 times the radius of the 
impacting drop. 

the mechanics of the process is such that, right on the boundary, the volume of the 
entrapped bubble is not zero but has some finite value. In  other words, as the 
boundary is approached from the outside, the ‘nipple’ a t  the bottom of the crater 
shows a greater and greater tendency to close off. Right a t  the boundary, therefore, 
a bubble is entrapped having essentially the volume of the nipple. As one penetrates 
deeper into the bubble region, as in figure I 1  ( d ) ,  the volume of the bubble becomes 
larger, but not more than a few times than at the point of incipient formation. This 
remark has some important implications for the noise produced by rain falling on 
bodies of water, as will be mentioned in the next section (see also Prosperetti et al. 
1989). Finally, the high-impact-velocity case of figure 11 (e )  shows a behaviour very 
similar to that seen earlier in figure 9 (d). 

The apparent proportionality of the crater growth time to Ui has already been 
mentioned in $3. We show in figure 12 a comparison between this experimentally 
based relation and the computed dimensionless time to achieve minimum kinetic 



170 H .  N .  OQuz and A .  Prosperetti 

I Time = 0 I I 12.9 

1 .o I I 14.3 

I 

3.5 

I 4'6 

I 15'0 

I 16.3 

I 21'5 

FIGURE 11 (a). For caption see p. 174. 
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FIGURE 11 ( b ) .  For caption see p. 174. 
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FIGURE 11 (c) .  For caption see p. 174. 
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FIGURE 11 (d ) .  For caption see next page. 
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FIGURE 11. Successive computed surface shapes of a drop impacting a plane surface for R = 1 mm 
and (a) U = 1.5 m/s, ( b )  1.75 m/s, (c) 2 m/s, (d) 2.4 m/s, and ( e )  3 m/s. These cases correspond to 
the points marked E ,  F ,  G ,  H ,  I in figure 6. The times indicated are non-dimensional values of the 
quantity t ,  = Ut /R .  
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FIGURE 12. The dimensionless time to minimum kinetic energy is shown versus d. According 
to the data, the relationship should be the straight line shown. 
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FIGURE 13. Dimensionless energy versus dimensionless time for the case of figure 9(c), R = 
1.75 mm, U = 2 m/s. The solid line is the total energy, the dotted line is the kinetic energy, the 
short-dashed line is the gravitational potential energy, and the long-dashed line is the surface- 
tension energy calculated as explained in the text. 

energy for two different values of the radius. The agreement is, also in this case, quite 
good. 

Finally, we show in figure 13 the dimensionless energy versus time for a typical 
case, that of figure 9 (c) .  The energy is expressed in units of pRsu2, which renders the 
initial value equal to gx x 2.094. At time zero the gravitational potential energy 
associated with the drop position is included but the surface energy is taken to vanish 
to avoid the inclusion of a large constant that would have obscured the performance 
of the numerical method. At any subsequent time the surface energy is evaluated by 
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subtracting from the total area the total initial area consisting of the undisturbed 
plane surface plus the surface of the impacting droplet. The figure shows the total 
energy to remain very nearly constant. The most serious irregularities are found for 
small times where the precision of the calculation is reduced by the rather crude 
initial condition. Later on the curves look relatively smooth with a residual waviness 
due to capillary waves. It can be seen that the oscillations of the kinetic and surface- 
tension energies have opposite phases, which indicates an exchange between these 
two forms of energy which is not necessarily the result of numerical inaccuracies but 
could very well occur in nature. 

9. Discussion 
We have presented a qualitative and a computational analysis of the process by 

which impacting liquid drops are able to entrap bubbles a t  the bottom of the crater 
that they form on the surface of a liquid. We have found that whether a bubble is 
entrapped or not is determined by a delicate balance between the times at which the 
outward motion of the crater walls is reversed a t  different positions. In this sense, 
bubble entrapment may be considered an event with relatively low probability. 

An interesting finding is that the fluid mechanics of the process is such that 
bubbles entrapped in marginal conditions do not have a vanishingly small volume. 
Rather, bubbles entrapped near the boundaries of the bubble region have a size 
comparable with that of bubbles formed well within the bubble region. As a result, 
not much variation in the size of bubbles entrapped by droplets of the same radius 
impacting a t  different velocities is observed. As shown by Prosperetti et al. (1989), 
this feature is responsible for the peculiar underwater acoustic signature of rain. 
Indeed, rain drops impinge at terminal velocity so that a functional relationship 
exists between their radius and impact velocity. It turns out that this relation, 
represented by the dashed line in figure 1,  has a very large slope so that bubble- 
entraining droplets have radii in a very narrow size range, from 0.450 to 0.475 mm, 
approximately, and a correspondingly narrow range in impact velocities, from 3.66 
to 3.84 m/s. The bubbles entrained by rain will therefore also have a very narrow 
spread in radii. Hence if, as experiment suggests (Pumphrey & Crum 1988; 
Pumphrey et al. 1989), only bubble-entrapping drops contribute to the underwater 
noise of rain, one would expect this noise to exhibit a peak a t  a rather well-defined 
frequency, corresponding to the natural frequency of the entrained bubbles. This is 
precisely what is observed experimentally (Scrimger 1985; Scrimger et al. 1987 ; 
Scrimger, Evans & Lee 1989; Prosperetti et al. 1989), with the peak around 
14-15 kHz. While we shall present detailed calculations lending further support to 
this hypothesis in a separate publication, we remark here that our computations 
estimate the radii of the bubbles entrained by drops to be between 0.19 and 0.30 mm. 
The natural frequencies of these bubbles span the range between 11 and 17 kHz, the 
centre frequency of which coincides with the position of the characteristic spectral 
peak of rain noise. 
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Appendix 
Since $Tcos$ and $I,, being the Cartesian components of the velocity field, are 

harmonic, in view of the axial symmetry, we can write the following Green's 
identities in the cylindrical coordinate system ( z ,  r ,  $) : 

where p = (R-r cos $)2 + r2 sin2 $+ (2- z ) l  

is the distance between the field point (2, R, 0) and the field point (2, r ,  $). Here the 
subscripts z, r ,  n denote partial differentiation. With our choice that the arclength s 
is zero on the axis of symmetry, the unit normal n and the unit tangent vector t are 
given by 

The form (A l ) ,  (A 2) is not the most suitable one for numerical computation because 
i t  involves normal derivatives. Since, however, 4 is harmonic, these derivatives can 
be expressed in terms of tangential ones using the relations 

and 

which can now be evaluated with a knowledge of 4T and q5= on the surface. 

substitution 28 = 4.  Indeed, we find 
The angular integrations in (A 1 )  and (A 2) can be carried out explicitly by the 

d8 

where A = (R+r)2+(Z-z)2,  

and m is given by 
4rR 
A 

m=-. 

Recalling the definition of the complete elliptic functions of the first and third kind 
of argument m, 

d8 
( l - m ~ o s ~ 8 ) ;  

cos2 8 
(1 - m cos2 8 ) s  

r2 K(m) = 

D(m) = r2 1 do, and 
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it  is easily seen that substitution of I, and I, into the Green’s identity evaluated on 
the surface with the limits 

and 

gives (5.1 a, b )  with the definitions 

2rK(m) H = 2r a K(m) G = - -  
x At ’ x an ~t ’ 

2r 2D(m) -K(m) 2r a 2D(m)-K(m) E=--  
X At x an At 

E ’ = -  

Explicit expressions for the normal derivatives appearing in these formulae are 

and 

where the vector h is given by 

h = ( Z - z , R - r ) ,  

where i is the unit vector in the r-direction. In these equations E(m) is the complete 
elliptic function of the second kind. In  deriving the above expressions we have used 
the following relations among the complete elliptic integrals : 

-- -- (E(m) -- K(m)), 
K(m) -E(m) dK(m) 

’ dm 2m l - m  f i ( m ) =  

We make use of the five-term formulae given in Abramowitz & Stegun (1964) for 
the numerical evaluation of the elliptic functions. 
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